New 2020 Article: A Sentence of Virginia Woolf

Tom

What is “Action”, that Nature Should be Mindful of It?

Newton/Maxwell/Marx: Spirit, Freedom and Scientific Vision

We have been tracing the course of the book, NEWTON/MAXWELL/MARX by way of a dialectical tour of three worlds of thought. We have seen Maxwell replace Newton’s “Laws of Motion” with the Principle of Least Action as the foundation of the natural world. Here, we seek the meaning of this curious phrase, Least Action.

Let’s grant that Maxwell – along with perhaps most of the mathematical physicists of our own time – is right in supposing that the Principle of Least Action governs all the motions of he physical world. How can we make sense of this truth? What is Action, and why is essential that it be Least?

First, we must begin by recognizing nature is not inert, but in some sense purposeful: every motion in the natural world (and that includes practically everything we can point to, once we take our hands off the controls!) will begin with a goal (Greek TELOS). Think, for example, of that complex process by which an acorn develops into a flourishing oak. This Motion will unfold in such a way that its goal will be achieved in the most efficient way possible. Sound like good economics? We’re asked to see every natural motion as directed to some goal, and as unfolding in such a way that waste or loss en route be the least possible under the given circumstances.

This principle can be expressed elegantly in mathematical terms, rather esoteric and belonging to the hushed domain of mathematical physics. But since it is actually in play everywhere around us, in actions going on at all times, it’s time we reclaimed it and demanded to know what it means. Let’s make a serious effort here to understand the implications that the physicists – Maxwell chief among them – have been saying.

For Maxwell, the true paradigm of physics is the laboratory of Michael Faraday, working immediately with phenomena and tuned always to hear, without complication of intervening symbols, the authentic voice of nature. The Principle of Least Action is about the world we live in.

However we may distort and engineer it, it is always nature, ever-active, with which we begin, and our projects end. We may think we begin with a tabula rasa and design with total mastery to purposes of our own, but every blade of grass, infinitely quantum-mechanical-wise, will laugh at us. It is in the fields and the mountains, the atmosphere and the oceans, and the endlessly-complex workings of our own bodies, that Nature’s economics is inexorably unfolding. High time, that we take notice of it!

We begin always with some process – the fall of a stone, from cliff’s edge to the beach below or the slow unfolding of an acorn into a flourishing oak. The principle applies in every case. Further, nature thinks always in terms of the whole process as primary: the economic outcome cannot be conceived as the summation of disparate parts, however successful each might seem in its own terms.

The unifying principle throughout any motion is always its TELOS, and it is this which in turn entails an organic view of the motion as one undivided whole process. Each phase of the motion is what it is, and does what it does, precisely as it contributes to the success of the whole. If this seems a sort of dreamland, far from practical reality, we must remind ourselves that we are merely rephrasing a strict account of what Nature always does! Things go massively awry (the seeding gets stepped on by the mailman) but these events are external constraints upon the motion: under these constraints, the Principle holds, strictly. Ask any oak tree, blade of grass, or aspen grove. Each has endured much in the course of its motion, yet each has contributed, to the extent possible, to the success of the ecology of which it is a part.

Economic achievement of the goal, we might say, is Nature’s overall fame of mind. Within this frame, exactly what is the economic principle at work? Everything moves in Nature in such a way that Action over the Motion will be least.

So, what is action? Action is the difference, over the whole motion, between two forms of energy: kinetic and potential Nature wants that difference to be minimal: that is, over the whole motion, the least potential energy possible to be expended, en route, as kinetic – i.e., as energy of motion. (One old saying is that Nature takes the easy way.) Or we might suggest: nature enters into motion gracefully.

Think of the falling stone: the stone at the edge of a high cliff has a certain potential energy with respect to the beach below. That potential is ready to be released – converted into kinetic energy, energy of motion. Thus the TELOS is given: to arrive at the beach below, with that high velocity equivalent to the total potential with which the fall began.

Our principle addresses the otherwise open question, how exactly to move en route? There is just one exact answer: the rule of uniform acceleration – steady acquisition of speed. Galileo discovered the rule; Newton thought he knew the reason for the rule. But Maxwell recognized that Newton was wrong, and we need now to get beyond this old way of thinking.

The real reason for the slow, steady acceleration is that the final motion, which is the TELOS, be acquired as late in the motion as possible, and thus that total-kinetic-energy-over-time be least.

Our principle may turn out to be of more intense interest to biologists than to physicists, as the ”kinetic energy” in this case becomes life itself. The seed bespeaks life in potentia. The ensuing show, steady conversion of potential—its gradual conversion to living form as the seedling matures – is the growth of the seeding, the biological counterpart of the metered, graceful fall of the stone.

Our principle governs the whole process of conversion: the measured investment of potential into kinetic form defines the course of maturation. Nature is frugal in that investment: the net transfer of energy-over-time is minimal; transfer in early stages of growth is avoided. Growth, like the fall of the stone, is measured, and graceful. Growth is organic in the sense that every part of the plant, at every stage of the way, is gauged by its contribution to the economic growth of the whole plant.

As it stands, our analogy to the falling stone may be misleading. It is not, of course, the case that the seed holds in itself (like loaded gun!) the potential energy of the oak; the case is far more interesting. The acorn holds in its genome the program for drawing energy from the environment in a way which will assure Least Action over the whole growth process. Once again, frugality reigns, since that energy not drawn-upon by the seedling will be available to other components of the ecology. Since the solar energy is finite, whatever is not used by one is available to the others.

We are ready now to ask in larger terms, “What sense does it make, that Nature be thus frugal in expending potential energy – minimizing its “draw” upon potential in early stages of growth, though total conversion by the end of motion be its very TELOS?

The question is a difficult one, touching on the very concept of life itself. Here, however, is my tentative suggestion. Let us consider Earth’s biosphere as a newborn project, awaiting Nature’s design. Our Earth (like, no doubt, countless other “earths” in Nature’s cosmic domain) is favored with a certain flux of energy, in the form of light from our Sun: just enough, on balance, to sustain water in liquid form, one criterion, at least, for the possibility of life. With regard to Earth, then, Nature’s overall TELOS may reasonably be characterized as the fullest possible transformation of sunlight into life. Earth also offers a rich inventory of mineral resources, which Nature will utilize to the fullest, over time, in the achievement of this goal.

Might we not think of this immense process, still of course very much ongoing, in the terms we’ve used earlier – as one great motion, transforming as fully as possible the potential energy of sunlight, into the living, kinetic energy of life? (It might be objected that the flux of solar energy is kinetic, not potential. It is so in space, en route, but is made accessible as potential by that immense solar panel, the green leaf system of the world – which by its quantum magic captures photons, uses them to split water, and thus generate the electrochemical potential on which the motion of life runs.)

That said, we may apply the logic of Least Action to life on every scale: life’s TELOS is to encapsulate our allotted solar potential energy in living form, always by way of the most frugal path possible. What is saved by the Least Action of one life-motion, is grist for the mills of others – so that overall, the solar flux is utilized as fully as possible. “As fully as possible” at this stage: but the long, slow motion of evolution continues – always, no less governed by Least Action, towards a TELOS we cannot envision, yet of which we must be organically a part, today.

For an expansion of this concept, you can read an earlier lecture: The Dialectal Laboratory: Towards a Re-thinking of the Natural Sciences

NEXT: Karl Marx and his place in Newton/Maxwell/Marx.

New iBook!

Early in his life, long before he met Alice and plunged down that rabbit hole into Wonderland, Lewis Carroll was given a very curious math problem. It was a simple equation, but it had no solutions in the world of real numbers (the counting numbers, with all their fractions and multiples). All its solutions, but zero, were imaginary! He looked in vain for a way to see them – an imaginary plane perhaps, on which they might be graphed. He couldn’t find one, but we can!

THE PRINCIPLE OF LEAST ACTION

First Principle of the Natural World

 

It’s with a certain sense of awe that I introduce a new page on this website, to be devoted to the Principle of Least Action. I’ve written about this principle, on this website (see the article here) and elsewhere, in various ways and contexts, but it appears now for the first time as the centerpiece around which writings on this theme will be gathered.

The principle itself, though simple, requires careful statement, before we do that, however, we must pause to take the measure of situation. Even as leading physicists and mathematicians have embraced Least Action as the single moving principle of the entire natural world, most others, even at the highest levels of education and professionalism in fields other than mathematics or the physical sciences, regard it as of no interest to themselves, or more likely, have never heard of it all.

The issue is acute: our old conceptions speak of mechanism, with even the most subtle of natural bodies composed ultimately of inert parts moved by impressed forces, according to equations knowable only to experts. What a different picture Least Action paints! Wholeness is, in truth primary, with causality flowing from whole to part, not from part to whole. Nature is everywhere self-moving, and throughout, life is real. In short, the era of Newton is behind us, and once again, nature lives! We cannot know yet, what the consequences of embracing this truth might be: but the time to begin exploring this question is surely now, before we have altogether destroyed this planet–the living system of which we are all organic parts, and on which our lives depend. It’s the mission of this web page to explore the concept of least action, and some of the many ways it may affect our institutions and or lives. Such a trajectory of thought, which I would call dialectical, has been the theme of the ongoing blog commentary on  Newton/Maxwwell/Marx. Between Newton and Least Action, we may be living in the acute stress-field of a dialectical advance of human understanding.

As a firm mathematical foundation for further discussions of Least Action, here is an elegant sequence of steps leading from Newton to Least Action, following closely the argument given by Cornelius Lanczos in his Variational Principles of Mechanics. I have distinguished seven steps in this argument, adding a few notes by way of commentary.

Note that this does not propose to prove the truth of Least Action (though some rugged Newtonians such as Kelvin might take it in this sense!). Rather it demonstrates the formal equivalence of Newton’s laws and the principle of least action. Lanczos points out that the argument is reversible: can be traversed in either direction. The two equations are formally equivalent, but speak of completely different worlds.

We should note that they are not of equal explanatory power. Least Action serves as foundation for General Relativity and Quantum Mechanics, areas in which Newton is powerless.

 

NEWTON / MAXWELL / MARX 3

Many of us may know what it means to feel “at sea”: without beacons to steer by, without terra firma on which to set our feet. A dialectical passage between two world-views is like that, and James Clerk Maxwell’s life-story might be read as the log-book of just such an expedition: a lifelong search for a clear and coherent view of the physical world. Maxwell’s voyage would almost precisely fill his lifetime, but it would in the end be rewarded by his recognition of one single principle, the principle of least action, which would be key to a virtually complete inversion of the Newtonian world order from which he was escaping.

NEWTON / MAXWELL / MARX 2

The work known familiarly as Newton’s Principia is the foundation stone upon which our concept of science has been erected. Despite all the transformations by way of quantum physics and relativity, this bedrock image of objective, scientific truth remains firm. Arriving now, however, as if from outside our own world, we may feel a new sense of wonder, and presume to ask a few impertinent questions about core beliefs normally taken for granted.

NEWTON / MAXWELL / MARX 1

A Dialectical World Cruise - Part 1

Good news! The Green Lion Press has now released in a single volume three of my earlier essays, collectively titled Newton/Maxwell/Marx. Many of their themes are familiar to readers of this website, but these essays are extensive, and gathered in this way, with new introductions and an overall conclusion, they reveal surprising relevance to one another. These essays speak to our troubled world today.

Does Marx, for example, have anything to do with Maxwell? Not on the surface—but at some deeper levels, which the book calls dialectical, each lifts us out of the Newtonian world in which we have lived since Newton wrote. Let us call this tour of three contrasting world-views, a dialectical world-cruise!

Edward Abbott once wrote of a realm called Flatland, whose citizens—confined to life in a table-top—had no idea how flat their world-view might be. They had never viewed themselves and their confinement from outside. Now, no less than they, we too need fresh perspectives and new insights, if we are to take the measure of own confinement and our net of unquestioned habits of thought. Newton/Maxwell/Marx navigates these unexplored waters, becoming a dialectical journey between worlds of thought, each based on its own fundamental premises concerning, as we shall see, even the nature of science itself. In turn, our concept of the nature of nature has ramifying consequences for our beliefs concerning society and human freedom.

In these essays, each port of call is represented by one of the great works of our western tradition—so these thoughts are in one sense, rather timeless, than new. But this is to be a spirited, not a scholarly investigation. We are no mere tourists, but earnest inquirers. Our purpose is not that of the objective scholar, to know about the works, but of the free mind, reading as if their authors addressed their words to us to us—as indeed, in some sense they surely did.

Reading in this mode is itself an art, and calls for skills which collectively have been known as the liberal arts, because these are the arts meant to set our minds fee. Not surprisingly, then, these three essays concern three books read at St. John’s College, in Annapolis and Santa Fe, whose curriculum is designed to capture the liberal arts in the modern world. Our essays ion emerged from this cauldron, and first appeared in the pages of the Great Ideas Today, once an annual al publication devoted to critical studies of the great books and their corollaries in our time. I express my indebtedness to John Van Doren, then executive editor, who guided these essays to their first appearance.

Our three ports of call will be, to give them their full and proper titles: Isaac Newton’s Principia Mathematica Philosophiae Naturalis (Mathematical Principles of Natural Philosophy – the philosophy of all the natural world—by no means that part we now call “physics”; James Clerk (inexplicably pronounced Clark) Maxwell’s Treatise on Electricity and Magnetism, and Karl Marx’s Capital. These works are in dialogue with one another—not literally, for the first two were far apart in time, and while Maxwell and Marx overlapped London for a time, and indeed shared an interest in lectures on mechanism, it would be hard to imagine they ever met! No: their dialogue is the more real for being conceptual—belonging to a world of ideas—and there, Newton/Maxwell/Marx will show, their ties are deep, and very real.

This set of essays, then, becomes a book for adventurous spirits, and in that sense may be a book whose time has come. People today are restless, questioning institutions which no longer make sense. Long-held assumptions are subjected to doubts reaching to the foundations of our societies and their economic systems. Even our sciences come into question, as in thrall to a limiting, encompassing world-view.

All this is of a piece with the dialectical sprit of our authors themselves: imperial in Newton’s case, gentle in Maxwell’s, boldly ironic in Marx’s – but in one style or another, each is a revolutionary, questioning the foundations of the world which surrounds them.

A posting to follow soon will offer a brief synopsis of this Dialectical World Cruise.

Visit Newton /Maxwell / Marx 2

From Diagram to Visual Experience: More on the Reality of the Hypercube Theater

We recently launched our Hypercube Theater, a stage derived from the hypercube (the tesseract) on which four-dimensional figures can make real appearances before our eyes. In that posting, a series of small photographs and diagrams served to illustrate our line of reasoning.  

Now we have transformed these diagrams into screen-filling images, a development which illustrates an important point. Beyond the difference in size, this marks the advance from a mere diagram to a true visual experience.

 

We consult diagrams for the information they convey, but we approach a true illustration in search of a visual experience. It’s the familiar difference between looking, and seeing. When we look at a powerful photograph, what we see is, not a picture on paper, but a mountain range. It is as if we were there: we experience, we say, a sense of presence.

 

In three dimensions, this same distinction applies, becoming the difference, let us say, between a cardboard stage-set, and a ship in a storm at sea. Even in daily life, this same distinction arises. Our eyes present to us, we realize, only optical images of the room around us; but we experience, not such images of a room, but presence in the room itself.

 

It’s in this spirit that we approach the hypercube, not as a mere geometrical figure, but as a theater – a stage on which all the entities of a four-dimensional world can make their appearances, present to our eyes.

 

The new version of our Gateway Theater posting tests the ability of screen-filling images to support this transformation. Ideally, of course, the computer screen would – like the theater stage it is becoming – fill our field of view. Even on a laptop screen, however, our visual imagination will have the power to fill that gap! Follow the link below to experiment with a first step in entering the fourth dimension!

Enter the updated Gateway to the Fourth Dimension here.

Let us know if this works for you.

Gateway To The Fourth Dimension: The Hypecube As Theater

Some time ago, we launched a new department on this website to be devoted to studies of the fourth dimension. In our first entry, we met the basic figure of 4D geometry, the hypercube, or tesseract. We watched as it emerged from the familiar cube, extending into the fourth dimension.  

Now we return to the completed hypercube, to see how it can be better understood, and how it can be put to use: first, to view; and then, even to create other four-dimensional figures of whatever sort.

 

We begin with this model:

A model for imagining the Fourth Dimension.

 

We plan to mount these studies on the Fourth Dimension page of this website under the overall title Gateway to the Fourth Dimension. Part I, The Hypercube as Theater, appears today. Take a look, and let us know what you think!

Read this new article here.

 

These studies are all contributions  to the preparation of a book currently  in progress, “At Home n the Fourth Dimension." Art work for "At Home in the Fourth Dimension" by Anne Farrell. Model and photography by Eric Simpson. All rights reserved.

 

The Rhetoric and Poetic Of Euclid’s “Elements”

Part II: Euclid’s Poetic

1. The Tragic Narrative

revised 8August 2010

In an earlier posting, I drew attention to Euclid’s rhetoric, ending with a promise to follow this with a post on his poetic. This entry is meant to fulfill that promise – but first, it will be essential to explain the sense in which the term poetic is being used. I follow Aristotle, who in his Poetics has drama primarily n view, so we’ll be reading the Elements as high drama.

The soul of the drama, Aristotle believes, is the MYTHOS, the story, and indeed, Euclid is telling a remarkable tale. It is a trilogy, in the pattern of Aeschylus’ Oresteia, in which we pass from a path of early triumph to the darkness of despair – and only finally, in the third play, discover a way forward of a brilliantly new sort.

In the first play, Agamemnon, returning triumphant from the Trojan war, is murdered by his queen Clytemnestra. Next, in the dark logic of timeless vengeance, she must in turn be murdered by her own son, Orestes. This most heinous of crimes leaves Orestes in terrifying darkness, the hands of the avenging Furies, against whose iron grip enlightened reason appears to hold no power. Only in Athens, the city of Athena, will rescue become possible from this endless logic of retribution. Finally, in the third play, at the point of crisis, the Furies are perceived to waiver.  At a word from Athena, they turn: time holds its breath, and through the subtle wit and rich wisdom of the goddess, they prove at last, persuadable. They catch some dawning image of hope, of purpose, of a good beyond the blind, literal logic of their law. From agents of death they might become nurses of life, to be celebrated as agents of abundant harvests. With this opening, a new Athenian law-court is founded, in which reason directed to the good triumphs over the Furies’ old law of consequence and necessity. Performance of Aeschylus’ play was to become a civic ritual, in which the assembled city would be reminded, through the experience f terror and its release, the foundation in a higher, human reason, of the Athenian polis.

Can we imagine that Euclid’s drama reaches to such extremes of darkness and of light?  Almost startlingly, we find that it does. This is not, indeed, the customary way in which a work of mathematics is to be read. Nor is it usual to find a relationship, at this deepest level, among the political, the mathematical, and the poetic. Yet this, I propose, is the reach of Euclid’s poetic.

2. Tragic Crisis in the Elements

At the heart of Greek mathematics lies the problem of continuity, for which Aristotle uses the word SYNECHEIA, “holding together’. The Pythagorean Theorem – whose traditional name already suggests its mystic portent –makes its appearance as Euclid’s Proposition I.47, at the culmination of the first book of the Elements. There, it marks as well the beginning of a reign of innocence which will last through the first four books: we build a succession of figures and explore their relationships with no apparent reason to doubt that our foundation is secure.  Silently but inexorably, however, this innocent theorem will be leading us into confrontation, at the close of Book IV, with a mystery hidden in the hypotenuse of that equilateral right triangle – the diagonal, that is, of a square.  No longer the simple line it had appeared, it will be revealed as a yawning chasm, seat of the darkest of mysteries – the mystery of the continuum.  Since any straight line can become the diagonal of such a square, every straight line must harbor the same abyss.

The proposition itself demonstrates as we all know, that in a right triangle, the sum of the squares on the sides equals the square on the hypotenuse. We learn this today as school children, and take it   as familiar knowledge thereafter, but it brought Greek thought to a standstill, plunging mind into the darkness of mystery: the very cave of the Furies. How could that be?

The answer lies in the proposition to which this one leads – one however which Euclid takes care to bury in silence, and leave unspoken. It lies too close to the heart of mystery.

It is easy to prove, on the basis of the Pythagorean Theorem, that “If a number measures the side of a right triangle, no number exists which will measure the diagonal. To appreciate its force, we have to pause to ask, “What is number?”  To which the answer is: Every number is a multiple of the unit. Thus if we write for example 1.414, we refer to a number which is 1,414 “thousandths”, or the 1,414th multiple of .001, chosen as unit. Every number is in this way some multiple of some unit.

Very well: by means of number in this way the rational mind, LOGOS, can know, and precisely name, every length – can it not? In the darkness of Euclid’s unspoken proposition, the answer is “No!”. The diagonal of the right triangle clearly has a length: we have just made that clear in the Pythagorean Theorem itself. But the secret proposition (imparted orally, we may be sure, to chosen students) makes it clear as well that LOGOS cannot know this length. If LOGOS cannot know this simplest of all entities, there must be no bounds to what mind cannot know.

Aristotle takes up this problem of the continuity of the straight line in his Physics, as foundational to the integrity of the cosmos itself, in all its aspects and all its levels. If the straight line fails, all else fails with it...

Here is the problem. Suppose we attempt to fill the line with all the thinkable multiples, however large, of all the thinkable units, however small. We can generate an infinity of points, corresponding to the rational numbers – yet the unspoken theorem implies immediately that we will have missed at least as many points as we filled. Indeed, our rational points actually leave the line infinitely more empty than it is full, and thus devoid of any semblance of intelligibility. We know that the diagonal of the square exists; but we know as well, by its dark corollary, that we cannot know its length, or the lengths of an infinity of infinites of other lengths within its length. LOGOS is at once the mental faculty by which we speak (and in that sense, the word means the spoken sentence – in turn, Latin for “thought”), and ratio or number, as a measured length is known by its ratio to the unit. Not being able to measure, means that mind, as LOGOS, has been struck dumb.

This is, then, the moment of darkness for LOGOS, the confrontation with the irrational, the ALOGOS. Plato sees this in the Dialogues as the threatening darkness of the entrance to ELEUSIS, the site of the mysteries, as well as the APORIA, the impassible sticking-point, in the dialectical argument itself. As Euclid and Plato both know well, it is figured in the despair of that tragic hero at the crisis of the trilogy. Literal LOGOS, counting sins and reckoning consequences in the manner of the Furies, leads the mind only to emptiness and distraction. If Euclid were to leave his project at this point, it would lie in ruins. In tragedy, this is the terrifying cave of the Furies, with whom it is impossible to reason in any higher sense. For Aeschylus, as we have seen, at this point of crisis, Athena intervenes with just such a new form of reason, a reason which looks beyond the reckoning, of LOGOS, to a vision of the beautiful and the good. What hint will Athena now whisper, in Euclid’s ear?

For Euclid, the hold of LOGOS is broken by the introduction of something new, which he calls magnitude: a way of measuring beyond the counting-logic of number; a way by which mind can embrace the wholeness of the line. For Plato in the Republic, it is the passage from the cave of LOGOS to the light of NOUS. The word mystery derives from the verb MUEIN, to be silent. NOUS is silent knowing, direct, wordless intellectual insight of a truth beyond words. This is the art of Athena, which awakened a saving hint of recognition in the wits of the Furies, and made the Athenian law-court, and with it the Athenian polis, possible. What word will Athena now whisper in Euclid’s ear, to save his Elements – and with them, it would seem, the wholeness of the intelligible cosmos?

3. ELEUSIS

Euclid’s plot has moved forward at a vigorous pace, offering to mind an unfolding sequence of intuitive objects. Now, in Euclid’s strange Book V, time stops, and the intuitive mind will be given no object on which to settle. There will be no countable or measurable objects: we will be making our way out of the realm of counting- number, which has betrayed us. Instead, we are to speak in words which have no objects: in terms of something Euclid calls magnitude (MEGETHOS) – the word Athena must have whispered n his ear! Today we call these irrational numbers, but as we see, for the Greek mind this is simply a contradiction in terms (ALOGOS LOGOS – the illogical logical!). It is a new and different abstract realm, in which mind enters upon a quest of its own. For Euclid, this quest is decisive: our goal is to restore mind’s relation to those real and most beautiful mathematical objects, which at the end of Book IV seemed to have been rendered utterly inaccessible.

The role of Book V, then, will be to open to mind a path which seemed to have been denied it: a path, beyond LOGOS, to the direct intuition of those most beautiful figures, the regular geometrical solids with which the Elements will close.

We cannot follow here the intricacies by which Euclid achieves this in Book V; even the definition of same ratio, with which the book begins, is daunting. We can say, however, however, that in Book V he accomplishes to perfection the limiting process we know today as Dedekind’s cut, Dedekind carries out in analytic terms essentially what Euclid had done two thousand years before. By carrying the measuring process to an infinite limit, it restores the power of mind to address all things – not however, as LOGOS, but after this mystic passage, as that intellectual intuition termed NOUS. We began with NOUS in the first books, but lost trust in it with what seemed the catastrophe of reason at the close of Book IV. Now, by way of the abstract concept of MEGETHOS – length, in a sense, without object – NOUS is once again accredited, and the way is open to our intellectual delight in the procession, in Book XIII, of the regular solids.

4. NOUS the Way of Intuitive Mind

There is a telling analogy here: Aethena in Aeschylus’ third play makes very certain that Athens will remember and celebrate the Furies, who have hitherto been so terrifying. Indeed, the tragedy is just that civic remembrance, and celebration. The Athenian mind, purified by the experience of tragedy, has been strengthened to the point of carrying the polity through situations which will continue to be suffused with the irrational.

Surely it is in the same spirit that Euclid makes certain to track the irrational as it appears at every turn, appearing everywhere the construction of the regular figures. To track it, he must first name it: endow the ALOGOS with LOGOS!

The powers of Book V enable him to do just that, by way of a newly empowered intuitive mind. NOUS contemplates the regular solids now in the full measure of their regularity and symmetry, but at the same time with hard-won awareness of their infusion with the darkness of the barely-speakable. They are no less beautiful – indeed, perhaps more wondrous – for being tragic figures.

5. The Dodecahedron: Noetic Being

The dodecahedron (regular solid of twelve faces) is the cumulating figure in Euclid’s sequence of construction of the regular solids. (Proposition 17 of Book XIII). Euclid is careful to include, in the case of each solid, that if the radius of the enclosing sphere is rational, then each s of the equal edges will be an irrational line.  And in each case, by way of the powers of Book V, the irrational has been specified and given what we might well think of as a mystic name. It has been the work of Book X, ascribed to Theaetetus, to work through this daunting project, and construct, in effect, a dictionary of the irrational.

Here in Euclid’s final figure, mind comes to rest on such a weave of the rational and the irrational. Here, if the radius of the enclosing sphere is rational (taken as our unit of measure) then every edge of the dodecahedron will be the irrational known as APOTOME. The name has been hard-won, as each of these rational-irrationals has been systematically constructed and blessed with its mystic name in the course of Book X. The APOTOME was christened in Prop.73 of that book.

We would be entering a very different mathematical world if we were to translate the APOTOME’s construction into the language of Descartes and modern algebra. But it may be of interest, and suggestive of the complexity of the heroic labors of Theaeteus, to know that the analytic formula for the edge of the dodecahedron looks like this:

Here, r is the radius of the inscribed sphere, and the rational unit in this case.

(Heath’s Euclid, III, p. 510)

6. A Closing Note

Recalling our initial claim, concerning Euclid’s rhetoric, we see that he has despite all odds remained true to his original plan. He appeals in the construction of this last figure, as he did in his first, that equilateral triangle, to the reader’s agreement by way of intellectual intuition, NOUS, rather than to any binding chain of LOGOS. That insight has become, under Euclid’s guidance, stronger, deeper and wiser than it was when it first looked upon the equilateral triangle. We could not have imagined then, as we now know, the overwhelming probability that the lines of the first triangle, if chosen by chance, would be unmeasurable, and inaccessible to LOGOS. Euclid’s Elements thus stand with the wisdom of Aeschylus, as witness to the power of intuitive mind.

We know well that our contemporary world has not followed that heroic path. There is more than one path to take out of the depths of ELEUSIS, whose abstract magnitude threatens to dissolve all substance. Euclid rescues substance; Descartes, embracing the abstraction of MEGETHOS, which he translates as extension, turns the world into one universal algebra, one universal “x”.

Book V thus stands at a crossroads of history, the point at which our contemporary culture left all ancient constraints behind. But that is by no means the only train of thought open to us in the modern world; Euclid’s wisdom survives today in other forms.

To explore more fully the depths of Book V and its implications for our position today would surely be work for a further blog posting. Meanwhile, as ever, comments on this one are earnestly invited.

On the Concept of a Dialectical Divide

Commenting on my lecture, “The Dialectical Laboratory”, Tony Hardy has raised a number of interesting issues. They take us to one overriding question: “What do we mean b the term dialectical? A dialectical question, I believe, splits our world-view down the middle: virtually all of our perceptions, and our purposes as well, are placed at risk.  A dialectical question, therefore, is not one which can be resolved by negotiation among familiar options. We stand before a new and altogether different court of review. The principal model for this is the Socratic dialogue, which places a respondent’s life, and that life’s central goals under devastating review.  Worst, we might say – that review is not that of an external judge, but a hitherto unrecognized standard within. The orator Gorgias, acclaimed political expert of Athens of his day, is a prime target of Socrates’ dialectical art. His very life crumbles before our eyes as he recognizes that it has lacked one transforming concept, that of justice. He holds great powers, but he has used them to serve no good end.  This is a tragic fall, mirrored in the fall of Oedipus. The classic term for a life, or a world-view, based on false pretention is HYBRIS (pride). To live on the wrong side of a dialectical divide is an invitation to disaster.

Sight is the universal metaphor for this inner vision which can judge truth. Socrates images a dialectical emergence as the passage into sunlight, from the false lights and shadows of a cave, into the full light of the sun. Oedipus takes his own eyesight in rejection of the false vision which had guided his life.

In the spirit of the same metaphor, we rightly speak of the perspective we gain when as readers we witness a transformation of world-view, as fascinated readers of the Socratic dialogues, or terrified spectators of Oedipus’ downfall, in the theater.  We can weigh and discuss a dialectical world-change as if it were a mater for formal consideration, as I have done in a recent web posting on what I’ve characterized as the Lagrangian Dividebut we should not lose track of the stakes at issue. Dialectical issues cannot be resolved by reasonable adjustment or adjudication by a court located within either system.  From the point of view we all occupy as dedicated members of a present world system, exit from that system looks like apostasy, or a tragic fall.

Although the alternative we described as “Lagrangian” between organism and mechanism looks like a problem within natural philosophy, I believe our concept of natural philosophy sets the stage for our view of life and our social institutions.  Although it is the pride of our modern science to believe that its very success depends on its freedom from “metaphysics”, this illusion strongly suggests that of Oedipus or Gorgias. To elaborate this thought would be matter for a much longer discussion, but if I were to assume the mantle of Teiresius, the blind seer who counsels Oedipus, I think it might be enough to utter the keyword competition. The concept of lives, nations and a world, based on competition, strife and isolation, rather than (to put it simply) love and community, may well be killing our planet and leading our so-called “international community” to self-destruct.

It used to be fun to imagine a “visitor from Mars” taking a distant look at our human scene; he would regularly be thought to find us insane.  Ironists such as Swift, Aristophanes and Shakespeare have found ways to make that same judgment. If investing our lives in scenarios in flat contradiction to our own best sense of values is insanity, we can see how they might all be right.

There is a better way; we do have a choice – though in a thousand ways we forbid ourselves to think about it.

In one way or another, consideration of this option seems to be the ongoing concern of this website!

Organism vs. Mechanism: Science at the Lagrangian Divide

The Lagrangian equations are a powerful set of differential expressions describing the motion of a complex system.  With one equation for each component of the system, they would seem to offer a powerful expression of the relation of part to whole. They are, however, seriously ambivalent: they can be read in either of two opposite ways. They present, then, a stark problem for the art of interpretation, the highest branch of rhetoric, as it comes from Augustine to Bacon and Newton.  The same statement becomes a watershed; it may belong to one world, or its opposite – but not both.  Each is a containing frame, within which we picture, and live, our lives

Read in one way – the way most common today – they are seen as derived from Newton’s laws of motion, and thus adding nothing fundamentally new. From this perspective, they merely rephrase Newton in terms of the concept of energy, a mathematical convenience in certain circumstances but making no fundamental change in our understanding of the natural world. In this interpretation, they express what we today call mechanism, which sees the motion of any system as the mere aggregation of the motions of its individual parts. Causality flows upward; motions of the parts explain the motion of the whole.

Seen from the other side of the Lagrangian watershed, however, the same equations express a world of a totally different sort. Here, the same equations are derived from the Principle of Least Action – a concept which readers may recognize as one of the recurring themes of this website.  The system itself as a whole, described in terms of potential and kinetic energy, becomes the primary reality and the source of the motions of the parts. Causality arises from the  interplay of these energies, and flows in the reverse direction, from whole to part.

Within the world of mechanism – the first interpretation – there is no place for goalor purpose. These are concepts considered far too vague to meet the standard of objectivity, the signature of modern science.

Remarkably, however, Least Action reconciles purpose with quantitative objectivity. By means of the mathematical technique of variation, which considers all possible paths, this principle seeks the optimum path by which potential energy may, over he whole course of any natural motion, be transformed to kinetic. In this interpretation of Lagrange, then, our world-view is transformed. Science itself, while remaining strictly objective and quantitative, becomes at the same time goal-oriented – all at once!

More than this, however, science on the Least Action side of the Lagrangian divide becomes, at last, fundamentally organic. This arises from a further, crucial feature of Least Action: if a system as a whole moves in such a way as to minimize action,so also will, within the bounds of external constraints, every part of that system. The goal which belongs primarily to the whole, is pervasive: it is shared by every part.

It was important in stating this principle to add “within given constraints”, because a rigid part of a man-made machine has few options. By contrast, the myriad components of a leaf, or of a cell or enzyme within the system of a leaf, navigate among unimaginable options toward the common goal of turning sunlight into life, over the season of the leaf, the life of the tree, or the evolution of photosynthesis on earth.

It is this community of purpose, nested and shared, which renders a system trulyorganic – a living being, something fundamentally beyond any bio-molecular mechanism, however intricate.

It is hardly necessary to add that it is this sense of nested purpose and shared membership in natural communities which has been so lacking during the long reign of mechanism. Our so strongly-held worldview has diverted us from that other option, which has nonetheless long formed a strong alternative flow of thought and practice in science, mathematics, politics and the arts. Now in many ways, not least the earth’s biosphere itself, the demand is upon us to recognize that we do have an option of immense importance. Viewing this whole scene now, we might say, from the Lagrangian ridge-line itself, with both worldviews clearly in view, our task is truly dialectical: leaving none of the insights of the past behind, we are in a position to move forward into a new, far richer and wiser world.

That new world-view, which has appeared here as a richer interpretation of Lagrange’s equations, is the ongoing theme of this website – always with an eye to Maxwell’s turn to Lagrange as mathematical vehicle for the launch of his concept of the electromagnetic field, paradigm, if ever there was one, of that whole system of which we have been speaking.

[A brief introcution to the Principle of Least Action is given in my lecture, “The Dialectical Laboratory” .

It is important to add that in this thumbnail sketch, many nuances of the application of Least Action have been left without mention]

"There's no Space in Euclid!" or Euclid's Rhetoric

“There’s no ‘space’ in Euclid!”I remember vividly the moment when a talented young tutor at St. John’s College in Annapolis, Maryland, came careening down the stairway our old library, unable to contain this startling realization. As a new tutor at the “Great Books College”, he had likely been assigned to teach a class in the subject he knew least, and was as a result making his first encounter with Euclid’s Elements in the company of a class of first-year students – an experience as fresh and surprising to him as  to his student fellow-readers.

Euclid writes in a style we no longer expect of mathematicians: simple, confident, almost buoyant. In the scale of rhetorical possibilities, Euclid’s is the style Aristotle calls “simple”. His figures stand upright and firm, on their own: they have no dependence on a “space” in which to be.

Reading the classics in this unscholarly way, as if they had been written for us, is an experience filled with such surprises; as myself a student at the College at the moment of this proclamation, I recognized the experience: the same revelation had struck me not long before. Euclid’s idea of geometry is not what we moderns have been led to expect!

One aspect of this dis-conformity between Euclid’s world and our modern expectations is this troubling absence in Euclid’s mind of any notion of “space”. Euclidean figures, all the way to the great regular solids in which the thirteen books of his Elements culminate, are organic webs of relationships, each standing whole before the mind’s eye, increasingly vivid  as the plot  thickens. Our relationship with them is direct and immediate: they are not “in” anything!

Similarly, Euclid never proves anything, in our modern sense. His style is strikingly at odds with the ways of today’s formalism, which tends to bind the mind in chains of consequence, rather than liberating it. Euclid leads us to contemplate the figure which evolves as the demonstration (epidexis, a showing) unfolds. We construct the figures as we go along, and take well-deserved satisfaction, as they unfold, in our workmanship.

At each step in the course of a demonstration we are tacitly invited to lend assent. There is, on the other hand, nothing as it might seem, loose or casual about all this. Euclid relies at each step on a very real power of intellectual intuition – on our human ability to discern truth when we see it. Euclid as author is, at the same time, our teacher. Under his guidance we develop confidence and soon find ourselves taking delight in the exercise of new-found power of geometrical insight. Skeptics today will accuse us of self-deception, and Euclid, of naivete. But we and Euclid may stand if we wish by our own agreement, when we confirm a geometrical truth.

An illustration from Euclid: Book 1-PropositionsA striking example of Euclid’s method at work would not be far to seek: the first words of his Elements make a strong demand on our visual intuition. We are asked to construct an equilateral triangle:  (please excuse the informality of these images derived from my aging copy of Euclid!)

The procedure is very simple.  We begin with the straight line AB:

And on it at point A draw a circle ACB of radius AB:

(Point C is here no more than a label, not yet specified, to identify the circle in question.)

Similarly, at point B, we construct a second circle. ACE of the same radius:

(“C” is still functioning as a label, not yet located.)

But now, Euclid begins the final stage of the construction, with no hint of apology or explanation, by giving the mysterious “point C” a specific location, and a crucial function: “from the point C, at which the circles  cut one another ….”.

We stop to catch our breath!  Point C has now been specified, without ceremony or justification.  How do we know that it exists – that the circles do indeed intersect?  Euclid’s answer is simple: we know it, because we see it, in our mind’s eye – and of course we never really doubted.

We proceed to draw the sides, complete the figure and carry our new triangle with us, a secure foundation on which the great structure of the Elements will rest.

This is to be Euclid’s style throughout: even first principles are not legislated, but offered for our agreement. They are things asked of us or postulated, as questions (AITIAE) or proposals – and the rhetoric of the Elements will be consistent throughout.

Similarly, when we pause at the close of a long stretch of reasoning, to review the steps we have just passed through, this is not a matter of mere logical bookkeeping.  It is, rather, clearing the way to that moment of commanding insight, in which we say, in the spirit we now think of as that of Gestalt, “Aha!”I see!” And indeed, we do.

This is the rhetoric of Euclid, which so shapes our path that the we are led to see.  What department of mind is this, which Euclid is invoking?  I’m sure he would be in easy agreement with Plato, that while the logical mind grinds away at syllogisms, another, higher department of mind sees truth, and says “yes” to an argument not because it is bound by chains of syllogism to do so, but because it can view truth directly, and know it for what it is.  Plato calls this higher, defining power of mind NOUS, and as his dialogue Theaetetus makes clear, mathematics, practised in this mode, is crucial preparation for an approach to the highest things.

I have been drawing attention to Euclid’s rhetoric, but just as the rhetoric of Plato’s dialogues is essentially philosophic – skillfully leading the respondent to a question which is philosophic because it leads logic to an impasse and thus invites a higher end– so Euclid’s rhetoric leads as well to an end beyond the familiar realm of figure. I propose we should identify this further mode, having to do with the matters of plot and character, as Euclid’s poetic. It will be the topic of a separate posting, to follow soon on the heels of this one.

------

Footnote Concerning Other Geometries

Followers of this website may find it surprising that on the one hand I praise Euclid for his clarity about a three-dimensional world – while on the other, I announce a new expedition on this very website into a world of four dimensions. I even claim that we will be experiencing an intuitive sense of relationships in a four-dimensional world. What sort of contradiction is this?

My own proposition is this: Euclid invokes the power of geometrical intuition, but he does not set bounds to it. We have the ability to keep track of the agreements we make in signing-on to sets of postulate belonging to worlds quite different from Euclid’s: we may very well learn to see in our minds’ eyes rooms with four directions at each corner, or left shoes turning readily into right – powers of the visual imagination we have not yet learned to use. This website will post images from this project as unfolds. Stay tuned, and feel free to share any comments you may have

What Do we Mean by the Term "Elementary"?

What do we mean when we use the term ,”elementary”, in relation to a science? Does it refer to an easy introduction, as contrasted with an “advanced” treatment of the same subject? Or does it mean a solid account of the very foundations of the science? Or, for that matter, are these the same thing?

Maxwell had a tendency toward writing “elementary” texts: he wrote one on heat, and another on mechanics, both for use in classes for workingmen – a project to which he was deeply committed. Finally, at the time of his death he was at work on his “Elementary Treatise on Electricity and Magnetism, intended to serve as the Cambridge text to support a new degree in experimental natural philosophy at Cambridge University.

My sense is that Maxwell endowed each of these with earnest attention – that he regarded the “elements” not as evident, but as a topic to be approached with great care. Our decision as to what is elementary in a science has a great deal to do with our sense of the form the finished product will take – so that the most difficult issues may focus on the most elementary beginnings.

For example, Maxwell wrote his workingmen’s text in mechanics, Matter and Motion, only after he had hit on the fundamental idea, new to him, of Lagrnagian mechanics and generalized corrdinates. This would not be a mechanics in Newtonian form, in which the elements would be assumed to be hard bodies acting upon one another according to laws; rather, elements of this sort would be the least known components of the system, represented by generalized coordinates.

In this view, what we observe initially is a whole system of some sort; it is this whole which is fundamental, and truly elementary. The parts which compose it, we may never know. Our science can be complete and secure even if that question remains unresolved, or unresolvable.

This is the point of view I believe Maxwell had come to, underlying his approach to the new program at Cambridge as well. If so, must it not represent a truly revolutionary inversion of our very concept of scientific knowledge?

It fitted the primacy he – following the path of Farday – was giving to the concept of the electromagnetic field. In this view, he field would not be a secondary phenomenon, a composite or consequence of simpler “elements”, but itself both simple and whole.

If the elementary is what is primary, then in the case of the field it is the whole which is the element, from which we deduce what we can, concerning lesser components. Faraday had felt strongly that in the case of electricity, there was no “charge” lying on the surface of a charged body, but what we call a “charge” was a field, which filled the room.

Isn’t it the case that when we ask for the “explanation” of a physical system, we are asking for an account in terms of its elements? If so, then the field is itself explanatory, and we would not seek explanation in terms of the actions of some lesser parts. What will be the consequences if we extend this view to physical explanation – or explanation beyond the realm of physics -- more generally?

"Prometheus Unbound: Karl Marx on Human Freedom"

 It is very hard to find a space today in which to read Karl Marx with an open mind; long history, and fairly severe social bias, stand squarely in the way.  At St. John’s College, however, we read every author with an open mind, as if this work were directed to us personally.  Such an approach is generally disparaged by the academic world, but it does have the advantage of freshness, and of giving open access to original thoughts so often obscured by criticism.  This lecture, given to the college, is an outcome of such an open reading of Marx’s Capital.

What emerges is a vivid picture, grounded in a Hegelian sense of the dialectic of history, of a new stage of true human freedom – a picture which looks remarkably attractive today.   Capital is a complex work, and easily misunderstood.  It begins with a theory of the operation of capitalism, founded primarily in the traditional economic theory of Adam Smith.  What Marx brings to this, apart from a steady suggestion of irony, is a severely scientific logic: what is the source of profit?  What underlies the operation of this system, and what must happen, if these principles are indeed allowed to operate?  A fundamental law emerges, and the structure of Capital at this point is strikingly parallel to that of Newton’s Principia. 

These laws lead to a situation like that we see on a world scale today, of severe dichotomy between those in the world who have, and those who have-not.  At the same time, Marx is surprisingly full of admiration for the accomplishments of capitalism; his chapter on “Great Industry” is a paean of admiration.  He sees not only the economic disparity, but at the same time the achievement of what we would now call the accomplishments of the “global economy”: cooperative labor on a vast scale.  What is being born, he sees, is a class of workers, practiced in cooperation, who see the contradiction between the new flood of products and their own immiseration.    

This sketch cannot pretend to do justice to Marx’s argument.  What emerges, though, is important to emphasize.  Out of this contradiction arises, dialectically, a new possibility, and a new understanding of the meaning of human freedom.  In the tradition of Smith, spelled out in the historic phase of capitalism, is an individualistic, competitive conception of personal freedom.  What Marx sees emerging is a richer concept of freedom: personal freedom indeed, but enriched by the possibilities of social cooperation.  This is not contradiction, but the birth of a new paradigm of the free individual whose possibilities are expanded, not contracted, by a cooperative approach to the resources of society.  

Marx’s reasoning is carefully worked, and his conclusions ring true as we look at the world today.  I have argued elsewhere that we must learn to think in terms of holism, the whole as primary.  Marx tells us that is not suppression of the individual, but liberation from the trap we are in.  Marx is a classicist at heart: he gets his notion of society as primarily whole from Aristotle, and his sense of the birth of freedom from Aeschylus and the founding of the Athenian polis, before he draws on Hegel.  This is a line of thought which I find important and deeply persuasive, in a world and a planet being torn apart by competition and the perpetual war which we see that it breeds.  

It is time that mankind arrived at some better idea of ourselves, and of human happiness and true human freedom.  This may be a good time to be reading authors who think outside our too-limited box.    

"Faraday's Mathematics"

“Faraday’s Mathematics” is a lecture I gave at at a conference on Faraday at St. John’s College in Annapolis.  Its subtitle is “On Getting Allong Without Euclid”, for Faraday had neither studied Euclid, nor taken on board the plan of formal demonstration which most of us learn from the study of geometry.  In short, Faraday thought in his own way, following the lead of nature and experiment.  He was in effect  liberated from the presuppositions about thought and physical theory with which others in the scientific community were encumbered. 

 The result was that Faraday hit on a fundamentally new way of understanding the phenomena of electricity and magnetism – by way of the new concept of the “field”. Maxwell deeply respected Faraday’s way, and dedicated much of his own life to comprehending how Faraday worked, and what it was that Faraday had done.  The field is a fully connected system, and fields interact, not by way of their parts, but as wholes.  This was clear enough to Faraday, but it required recourse to a new sort of mathematics – Lagrangian theory – and a major reversal of conventional thinking, to articulate a formal theory in which the whole is primary, and with it a new rhetoric of explanation.   This was Maxwell’s accomplishment in his Treatise on Electricity and Magnetism, a transformation I trace as a rhetorical adventure in my book Figures of Thought.

  In the end, Maxwell emerged with the astonishing claim that of them all, it was the uneducated Faraday who was the real mathematician.  If that could be so, what is mathematics?   That’s the question pursued in this lecture, which aims to find out what Maxwell could have meant.

Maxwell was clearly in earnest, and seems to be pointing to a mathematics embodied in nature, which lies deeper than either its symbolic or its logical forms.

 

 

 

 

 

"The Dialectical Laboratory": A lecture on behalf of holism in the sciences

 

My lecture, the “Dialectical Laboratory ” (see the "lectures" section of this website) , was given as a sort of parting statement to the St. John’s College community in Santa Fe.  But though directed to the college, and expressed by way of references to certain of the “great books” of that tradition, its message is of far broader import.  The “dialectical” issue – meaning, a watershed of western thought – is between a science based on mechanical actions between disparate parts, and a holistic science in which wholeness is respected, and whole systems are regarded as fundamental, not as mere aggregations of parts.  

Each of these two very different scientific approaches has its rigorous theory, and either can be used to solve engineering problems.  But conceptually they are worlds apart, and I am convinced it’s crucial that we follow the way of holism, and learn, before it’s too late, to appreciate and work with systems – from the least living organism to the global environment – which are more than the sum of mechanical parts.  Science is moving in this direction, but there is now no time to lose! 

Comments on these remarks, as well as on the lecture itself, will be welcome in reponse to this posting. 

 

 

 

The Anglo Revolution in New Mexico

The series of three segments constituting the article, “The Anglo Revolution in New Mexico” was published in 1977, but it seems likely that they will raise questions just as pertinent today.  I’ve described the circumstances of the articles in an Introduction to them on the “Articles” page of this website, where the articles themselves will appear.  The first, on the Santa Rita copper mine, has already been posted; the other two are scheduled to appear shortly. 

They refer to a clash of cultures which has taken many forms, overt or otherwise, over the years.  But contrasts of cultures need not take the form of conflict: each has much to learn from the others, and the possibility is real that out of their interaction will arise, dialectically, something far better than either could be alone. 

That was my hope when this series was written, and far more, it remains my hope today.  My own current involvement with the “Cosmic Serpent” project, referred to in earlier postings, is one vehicle for that conviction: it brings together indigenous and western approaches to the natural world.  These begin in sharp contrast, but each has much to learn from the  other – and the global environment cannot wait forever for us to straighten this out!  

So it seems to me.  Comments will be welcome to this posting, but more, to the articles themselves.  I’ll be waiting toi hear!     

 

 

 

 

 

 

"Reason", Old and New

Somewhere in the course of our western history, something fundamental has been lost: we have lost track of the wholeness of the psyche, and its membership; in a world which was whole and in which it might feel at home.   

Where did this happen?  The psyche was whole in Athens – its membership in the family, the polis and the cosmos were so presupposed that there were perhaps no words to express the separation and fragmentation so vivid to us today.   I don’t think there was a word for “objective” or “subjective”, nor was there a mind which might be thought of as a blank tablet, upon which an outside world might write. In society there was work, but no word for “job”, with the radical alienation that term implies.  I’m not suggesting life was in any sense idyllic – only that for better or for worse, the psyche was intact, and seated in the world. 

I’ll leave it to others to explain how this has come about, but somehow we now find ourselves equipped with a mind which is well-furnished with knowledge, indeed, but all too easily likened to a calculative engine, with a memory bank stored with data from an “outside” world.  We understand the mind better and better – but only as a marvelously equipped machine.  

What is missing would seem to be that faculty once called “intellectual intuition” – the power to see directly and immediately, without the intervention of words, truths which are timeless and fundamental.  That old intellect -- for which the Greeks did have a word: NOUS -- was inherentlyi drawn to beauty, which it deeply loved. 

I don’t see this as an exercise in nostalgia: there are ways open to us today by which we can recover this power, which is perhaps rather hidden than lost.  Other cultures have preserved it in ways we haven’t, and we have much to learn from them.  To a large extent it is our conception of “modern science” which denies the evidence of intuitive reason, and reduces the concept of “reason” to accurate symbolic calculation.  But there is another way within modern science, equally mathematical and rigorous, but founded in a concept of wholeness, and looking to the whole rather than the parts as the ground of “explanation”.  I have spoken about this way – the “Pinciple of Least Action” -- in my lecture, “The Dialectical Laboratory”, elsewhere on this website.   

 

Nothing prevents, I believe, our mending this split between that classic concept of intuitive reason, seated in the world and knowing and loving truth directly -- and the concept current today of reason as a calculative engine making what it can of an “outside” world.   We need only retrace our steps and pick up that thread of truth wherever we dropped it.  Not easy to do, of course, but worth every effort!

 

Any suggestions as to how to begin? 

 

        

 

 

 

In Praise of Generalized Coordinates

I've been expressing my enthusiasm for a holistic approach to the understanding of nature -- in relation to my favorite topic, the electromagnetic field, this takes the form of the Lagrangian equations for the field as a single, connected system characterized by its energy, not by forces.  It was crucial to Maxwell's development of the equations of the field in his "Treatise on Electricity and Magnetism" that they be formulated as instances of such a connected system -- i.e., in Lagrangian terms, and NOT on the basis of Newton's laws of motion.  (The difference -- very fundamental to our understanding of nature -- is developed in "The Dialectical Laboratory", in my "Lectures" menu.) Now, the question arises: "If we start in this way, from the 'top down', how do we ever arrive at the elements?"   The answer is, "We DON'T!" We move logically "downward" by finding the dependence of the energy of the whole system upon ANY set of measurements we want to make -- provided only that it's a complete (i.e. sufficient to determine the state of the system), with each measure "independent" of the others. We find such a set of measurements by doing experiments -- and when we get them, they are called "generalized coordinates".  The important thing is that there may be many ways we can define them, each set as good as the others: and in the whole process we never get any"real,underlying elements" -- we don't need them!  Reality is founded at the top, not the bottom, of the chain of explanation.   This is Maxwell's new view of physical reality, founded upon the field.  It is the opposite of the notion of "mechanical explanation", and it is the direction which our approach to nature desperately needs to take as we approach the challenges which lie before us today.  In terms of the philosophy of science, Maxwell it seems was far ahead of his time.  I propose to call this the "Maxwellian Revolution". 

Newton on the Field

I've just returned from a gathering in New Mexico, the first, pilot workshop of the Cosmic Serpent project, in which Native Americans and others-such as myself-gathered to compare Native American views of the natural world with those of "western science". With the essential help of Jim Judson from the Sister Creek Center in San Antonio, I brought along an "open lab" on magnetism. It seemed to me that the concept of the "field"-specifically, here the (electro-) magnetic field-might prove helpful in relating these two domains of thought about nature.

For the moment, here, I just want to comment on a document that was circulating during the conference concerning the mystery of magnetism. Asking very simply "What is Magnetism?", it was written by Bruno Maddox and published in a recent edition of Discover magazine. He reports that after exploring all options, he finds no scientific explanation of the cause  of magnetism.  If it remains a mystery, as he seems to conclude, then it may well be open to interpretation in terms compatible with Native American points of view.

That's a point of view I'll want to return to in future postings.  For the moment, I want to call attention to one of Maddox's findings. He hit on a text in which Isaac Newton-looking in this case at the mystery of gravitation-opines that "the notion that one body may act upon another at a distance through a vacuum without the mediation of anything else...is to me so great an absurdity that I believe no man who has in philosophic matters a competent faculty of thinking could ever fall into it."What did Newton have in mind?

I'm confident that he is not thinking in terms of any sort of mechanical explanation. Newton was not a mechanist: in fact, he wrote the Principia essentially as a polemic against mechanism, and in particular, against Descartes. No. His aim is to reveal the role of what he called Spirit in the world: the fact that the laws of these actions are mathematical in no way implies for Newton that they are mechanical, but is fully compatible with his concept of Spirit and its operation throughout the realm of nature.

I'm not arguing that Newton "had" the idea of the field-though his "intensive" quantity of a force seems to ascribe it to space itself, and is remarkably compatible with later ideas of the "field". My point is only that as he describes the mathematical System of the World, Newton feels himself to be in the immediate presence of mystery-in his view, divine mystery in the form of the Holy Spirit as God's agent in the natural world.

Newton's thoughts along these lines, together with those on alchemy and theology, were systematically buried by his followers, and have been uncovered only in recent years. But now that we have a better sense of what he actually meant, we may be the more ready to contemplate this bridge between "spirit" as Newton intended it, and "spirit" in Indigenous accounts of the operations of the natural world. Either way, we are contemplating something which has all the feel of wonder and mystery.

While in Santa Fe, I learned that students at St. John's College there would be gathering to witness this very mystery, in an experiment which Newton himself had thought would be impossible to carry out. Just as the Sun and Earth are joined by the gravitational force, so any two bodies on Earth must attract another by a very slight, yet calculable force. The experiment can in fact be done, with lead weights suspended by a delicate metal thread. To watch them, by way of a light beam and mirror, move toward one another slowly but surely, is to be present at a solemn ceremony at the foundation of the cosmos-as much a mystery, still today, as it ever was. I wonder if others agree with this reading of Newton's text?